The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The cogrowth exponent of a group controls the random walk spectrum. We prove that for a
generic group (in the density model) this exponent is arbitrarily close to that of a free
group. Moreover, this exponent is stable under random quotients of torsion-free
hyperbolic groups.
In this article, we discuss the quasiconformal structure of boundaries of right-angled hyperbolic buildings using combinatorial tools. In particular, we exhibit some examples of buildings of dimension 3 and 4 whose boundaries satisfy the combinatorial Loewner property. This property is a weak version of the Loewner property. This is motivated by the fact that the quasiconformal structure of the boundary led to many results of rigidity in hyperbolic spaces since G.D.Mostow. In the case of buildings...
Traitant la série de Poincaré d’un groupe discret d’isométries en courbure négative comme un noyau de Green, on établit une théorie du potentiel assez comparable à la théorie classique pour affirmer un parallèle entre densités conformes à la Patterson-Sullivan et densités harmoniques, et notamment définir une frontière de Martin où les densités ergodiques forment la partie minimale, et enfin l’identifier géométriquement sous hypothèse d’hyperbolicité.
Currently displaying 1 –
8 of
8