On convergence groups
Let be the left convolution operators on with support included in F and denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that , and are as big as they can be, namely have as a quotient, where the ergodic space W contains, and at times is very big relative to . Other subspaces of are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.
We prove that if a space X is countable dense homogeneous and no set of size n-1 separates it, then X is strongly n-homogeneous. Our main result is the construction of an example of a Polish space X that is strongly n-homogeneous for every n, but not countable dense homogeneous.
We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of -weight less than has a dense completely Hausdorff (and hence Urysohn) subspace. We show that...
We discuss some results about derivations and crossed homomorphisms arising in the context of locally compact groups and their group algebras, in particular, L¹(G), the von Neumann algebra VN(G) and actions of G on related algebras. We answer a question of Dales, Ghahramani, Grønbæk, showing that L¹(G) is always permanently weakly amenable. Then we show that for some classes of groups (e.g. IN-groups) the homology of L¹(G) with coefficients in VN(G) is trivial. But this is no longer true, in general,...
In this paper we continue the investigation of [7]-[10] concerning the actions of discrete subgroups of Lie groups on compact manifolds.