On recognition and compactification.
We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups for which is regular is given.
It is proved that every uncountable -bounded group and every homogeneous space containing a convergent sequence are resolvable. We find some conditions for a topological group topology to be irresolvable and maximal.
A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.
We introduce a notion of a Schwartz group, which turns out to be coherent with the well known concept of a Schwartz topological vector space. We establish several basic properties of Schwartz groups and show that free topological Abelian groups, as well as free locally convex spaces, over hemicompact k-spaces are Schwartz groups. We also prove that every hemicompact k-space topological group, in particular the Pontryagin dual of a metrizable topological group, is a Schwartz group.
We characterize those uniform spaces and commutative topological groups the bounded subsets of which can be recognized by using only one uniformly continuous pseudometric.