Displaying 1101 – 1120 of 3839

Showing per page

Finite-dimensional Lie subalgebras of algebras with continuous inversion

Daniel Beltiţă, Karl-Hermann Neeb (2008)

Studia Mathematica

We investigate the finite-dimensional Lie groups whose points are separated by the continuous homomorphisms into groups of invertible elements of locally convex algebras with continuous inversion that satisfy an appropriate completeness condition. We find that these are precisely the linear Lie groups, that is, the Lie groups which can be faithfully represented as matrix groups. Our method relies on proving that certain finite-dimensional Lie subalgebras of algebras with continuous inversion commute...

Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite Matrices

Alexander I. Bufetov (2014)

Annales de l’institut Fourier

The main result of this note, Theorem 1.3, is the following: a Borel measure on the space of infinite Hermitian matrices, that is invariant and ergodic under the action of the infinite unitary group and that admits well-defined projections onto the quotient space of “corners" of finite size, must be finite. A similar result, Theorem 1.1, is also established for unitarily invariant measures on the space of all infinite complex matrices. These results imply that the infinite Hua-Pickrell measures...

Finitude géométrique en géométrie de Hilbert

Mickaël Crampon, Ludovic marquis (2014)

Annales de l’institut Fourier

On étudie la notion de finitude géométrique pour certaines géométries de Hilbert définies par un ouvert strictement convexe à bord de classe  𝒞 1 .La définition dans le cadre des espaces Gromov-hyperboliques fait intervenir l’action du groupe discret considéré sur le bord de l’espace. On montre, en construisant explicitement un contre-exemple, que cette définition doit être renforcée pour obtenir des définitions équivalentes en termes de la géométrie de l’orbifold quotient, similaires à celles obtenues...

Flexibility of surface groups in classical simple Lie groups

Inkang Kim, Pierre Pansu (2015)

Journal of the European Mathematical Society

We show that a surface group of high genus contained in a classical simple Lie group can be deformed to become Zariski dense, unless the Lie group is S U ( p , q ) (resp. S O * ( 2 n ) , n odd) and the surface group is maximal in some S ( U ( p , p ) × U ( q - p ) ) S U ( p , q ) (resp. S O * ( 2 n - 2 ) × S O ( 2 ) S O * ( 2 n ) ). This is a converse, for classical groups, to a rigidity result of S. Bradlow, O. García-Prada and P. Gothen.

Foreword

Bureš, J., Souček, V. (1991)

Proceedings of the Winter School "Geometry and Physics"

Currently displaying 1101 – 1120 of 3839