Induced representations of groupoid crossed products.
Soit un corps de nombres et soit une extension cyclique de , de degré . L’induction automorphe associe à une représentation automorphe cuspidale de une représentation automorphe de , induite de cuspidale. La représentation est caractérisée par le fait qu’à presque toute place de , le facteur est le produit des facteurs , parcourant les places de au–dessus de . Par la correspondance conjecturale de Langlands, cette opération doit correspondre à l’induction, de à , des...
Let G be a non-discrete locally compact group, A(G) the Fourier algebra of G, VN(G) the von Neumann algebra generated by the left regular representation of G which is identified with A(G)*, and WAP(Ĝ) the space of all weakly almost periodic functionals on A(G). We show that there exists a directed family ℋ of open subgroups of G such that: (1) for each H ∈ ℋ, A(H) is extremely non-Arens regular; (2) and ; (3) and it is a WAP-strong inductive union in the sense that the unions in (2) are strongly...
We construct infinite measure preserving and nonsingular rank one -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving -actions; for these we show that the individual basis transformations have conservative ergodic Cartesian...
In this paper, we construct a hyperkähler structure on the complexification of any Hermitian symmetric affine coadjoint orbit of a semi-simple -group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of . By a relevant identification of the complex orbit with the cotangent space of induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on compatible with...
Let L be the full laplacian on the Heisenberg group of arbitrary dimension n. Then for such that , s > 3/4, for a we have . On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group , then for every s < 1 there exists a sequence and such that and for a we have .