Linear equations in the Stone-Čech compactification of .
Hindman, Neil, Maleki, Amir, Strauss, Dona (2000)
Integers
Gerald W. Schwarz (2012)
Annales de l’institut Fourier
Let be a connected complex reductive group where is a finite-dimensional complex vector space. Let and let . Following Raïs we say that the orbit is characteristic for if the identity component of is . If is semisimple, we say that is semi-characteristic for if the identity component of is an extension of by a torus. We classify the -orbits which are not (semi)-characteristic in many cases.
Hervé Jacquet, Solomon Friedberg (1993)
Journal für die reine und angewandte Mathematik
F.E.A. Johnson (1994)
Collectanea Mathematica
Magill, Kenneth D.jun. (2001)
International Journal of Mathematics and Mathematical Sciences
Stefano Meda, Rita Pini (1988)
Monatshefte für Mathematik
(1991)
Proceedings of the Winter School "Geometry and Physics"
Mejjaoli, Hatem (2008)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Jan Kubarski, Tomasz Rybicki (2004)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
E.P.van den Ban, H. Schlichtkrull (1989)
Inventiones mathematicae
Dan Barbasch, Allen Moy (1997)
Annales scientifiques de l'École Normale Supérieure
Fiona Murnaghan (1996)
Mathematische Annalen
Freydoon Shahidi (1983)
Compositio Mathematica
Sidney A. Morris (1976)
Colloquium Mathematicae
Elliot Gootman (1975)
Studia Mathematica
Tomasz Przebinda (2006)
Open Mathematics
In this paper we identify a real reductive dual pair of Roger Howe with an Ordinary Classical Lie supergroup. In these terms we describe the semisimple orbits of the dual pair in the symplectic space, a slice through a semisimple element of the symplectic space, an analog of a Cartan subalgebra, the corresponding Weyl group and the corresponding Weyl integration formula.
Laure Barthel (1991)
Journal für die reine und angewandte Mathematik
Solecki, Sławomir (2005)
Abstract and Applied Analysis
W.M. Goldman, J.J. Millson (1987)
Inventiones mathematicae
Bohumil Šmarda (1986)
Czechoslovak Mathematical Journal