The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
On étudie la notion de finitude géométrique pour certaines géométries de Hilbert définies par un ouvert strictement convexe à bord de classe .La définition dans le cadre des espaces Gromov-hyperboliques fait intervenir l’action du groupe discret considéré sur le bord de l’espace. On montre, en construisant explicitement un contre-exemple, que cette définition doit être renforcée pour obtenir des définitions équivalentes en termes de la géométrie de l’orbifold quotient, similaires à celles obtenues...
We show that a surface group of high genus contained in a classical simple Lie group can be deformed to become Zariski dense, unless the Lie group is (resp. , odd) and the surface group is maximal in some (resp. ). This is a converse, for classical groups, to a rigidity result of S. Bradlow, O. García-Prada and P. Gothen.
Currently displaying 1 –
7 of
7