Displaying 4101 – 4120 of 4562

Showing per page

The Young inequality and the Δ₂-condition

Philippe Laurençot (2002)

Colloquium Mathematicae

If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality x y ε φ ( x ) + C ε φ * ( y ) is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.

The Zahorski theorem is valid in Gevrey classes

Jean Schmets, Manuel Valdivia (1996)

Fundamenta Mathematicae

Let Ω,F,G be a partition of n such that Ω is open, F is F σ and of the first category, and G is G δ . We prove that, for every γ ∈ ]1,∞[, there is an element of the Gevrey class Γγ which is analytic on Ω, has F as its set of defect points and has G as its set of divergence points.

Theorem for Series in Three-Parameter Mittag-Leffler Function

Soubhia, Ana, Camargo, Rubens, Oliveira, Edmundo, Vaz, Jayme (2010)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification 2010: 26A33, 33E12.The new result presented here is a theorem involving series in the three-parameter Mittag-Leffler function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional differential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Leffler function.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for the vibration...

Theory of rapid variation on time scales with applications to dynamic equations

Jiří Vítovec (2010)

Archivum Mathematicum

In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note...

Three results on the regularity of the curves that are invariant by an exact symplectic twist map

M.-C. Arnaud (2009)

Publications Mathématiques de l'IHÉS

A theorem due to G. D. Birkhoff states that every essential curve which is invariant under a symplectic twist map of the annulus is the graph of a Lipschitz map. We prove: if the graph of a Lipschitz map h:T→R is invariant under a symplectic twist map, then h is a little bit more regular than simply Lipschitz (Theorem 1); we deduce that there exists a Lipschitz map h:T→R whose graph is invariant under no symplectic twist map (Corollary 2).Assuming that the dynamic of a twist map restricted to a...

Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis

Astha Chauhan, Rajan Arora (2019)

Communications in Mathematics

In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are...

Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey

Mainardi, Francesco, Gorenflo, Rudolf (2007)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classica theory of linear viscoelasticity, we contrast these two types of fractiona derivatives in their ability to take into...

Currently displaying 4101 – 4120 of 4562