Kolmogorov type inequalities for hypersingular integrals with homogeneous characteristic.
Kontinuierliche Linearkombinationen von Strecken.
Korn's First Inequality with variable coefficients and its generalization
If is a bounded domain with Lipschitz boundary and is an open subset of , we prove that the following inequality holds for all and , where defines an elliptic differential operator of first order with continuous coefficients on . As a special case we obtain for all vanishing on , where is a continuous mapping with . Next we show that is not valid if , and , but does hold if , and is symmetric and positive definite in .
Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions
We study the integrability of Banach valued strongly measurable functions defined on . In case of functions given by , where belong to a Banach space and the sets are Lebesgue measurable and pairwise disjoint subsets of , there are well known characterizations for the Bochner and for the Pettis integrability of (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.
Kurzweil-Henstock type integral on zero-dimensional group and some of its applications
A Kurzweil-Henstock type integral on a zero-dimensional abelian group is used to recover by generalized Fourier formulas the coefficients of the series with respect to the characters of such groups, in the compact case, and to obtain an inversion formula for multiplicative integral transforms, in the locally compact case.
Kurzweil’s PU integral as the Lebesgue integral
For a merely continuous partition of unity the PU integral is the Lebesgue integral.
Ky Fan inequality and bounds for differences of means.
Ky Fan's inequality via convexity.
-estimates for the -equation and Witten’s proof of the Morse inequalities
This is an introduction to Witten’s analytic proof of the Morse inequalities. The text is directed primarily to readers whose main interest is in complex analysis, and the similarities to Hörmander’s -estimates for the -equation is used as motivation. We also use the method to prove -estimates for the -equation with a weight where is a nondegenerate Morse function.
inequalities for the growth of polynomials with restricted zeros
Let be a polynomial of degree at most which does not vanish in the disk , then for and , Boas and Rahman proved In this paper, we improve the above inequality for by involving some of the coefficients of the polynomial . Analogous result for the class of polynomials having no zero in is also given.
inequalities for the polar derivative of a polynomial.
La conjecture de Dickson et classes particulières d’entiers
En admettant la conjecture de Dickson, nous démontrons que, pour chaque couple d’entiers et , il existe une partie infinie telle que, pour chacun des entiers et tout entier tel que , on ait où sont des nombres premiers. De même, pour chaque couple d’entiers et , il existe une partie infinie telle que, pour chacun des entiers et tout entier (nul ou non ) de l’intervalle , on ait où sont des nombres premiers et l’entier appartient à l’intervalle . La lecture non standard...
La convolution dans faible de
La dérivée aréolaire et ses applications à la physique mathématique [Book]
La mathématique non standard vieille de soixante ans ?
La rectifiabilité des courbes dans les traités d'analyse français de la deuxième moitié du XIXème siècle
La substitution dans les intégrales de Riemann-Stieltjes
La suite des approximations successives dans le cas general
La théorie de Karamata en bref