The search session has expired. Please query the service again.
Displaying 181 –
192 of
192
It is known that for almost every (with respect to Lebesgue measure) a ∈ [√2,2] the forward trajectory of the turning point of the tent map with slope a is dense in the interval of transitivity of . We prove that the complement of this set of parameters of full measure is σ-porous.
Among the many characterizations of the class of Baire one, Darboux real-valued functions of one real variable, the 1907 characterization of Young and the 1997 characterization of Agronsky, Ceder, and Pearson are particularly intriguing in that they yield interesting classes of functions when interpreted in the two-variable setting. We examine the relationship between these two subclasses of the real-valued Baire one defined on the unit square.
We prove that the class of functions with the Baire property has the weak difference property in category sense. That is, every function for which f(x+h) - f(x) has the Baire property for every h ∈ ℝ can be written in the form f = g + H + ϕ where g has the Baire property, H is additive, and for every h ∈ ℝ we have ϕ(x+h) - ϕ (x) ≠ 0 only on a meager set. We also discuss the weak difference property of some subclasses of the class of functions with the Baire property, and the consistency of the difference...
Currently displaying 181 –
192 of
192