The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 192

Showing per page

Multipliers of spaces of derivatives

Jan Mařík, Clifford E. Weil (2004)

Mathematica Bohemica

For subspaces, X and Y , of the space, D , of all derivatives M ( X , Y ) denotes the set of all g D such that f g Y for all f X . Subspaces of D are defined depending on a parameter p [ 0 , ] . In Section 6, M ( X , D ) is determined for each of these subspaces and in Section 7, M ( X , Y ) is found for X and Y any of these subspaces. In Section 3, M ( X , D ) is determined for other spaces of functions on [ 0 , 1 ] related to continuity and higher order differentiation.

Normal numbers and subsets of N with given densities

Haseo Ki, Tom Linton (1994)

Fundamenta Mathematicae

For X ⊆ [0,1], let D X denote the collection of subsets of ℕ whose densities lie in X. Given the exact location of X in the Borel or difference hierarchy, we exhibit the exact location of D X . For α ≥ 3, X is properly D ξ ( Π α 0 ) iff D X is properly D ξ ( Π 1 + α 0 ) . We also show that for every nonempty set X ⊆[0,1], D X is Π 3 0 -hard. For each nonempty Π 2 0 set X ⊆ [0,1], in particular for X = x, D X is Π 3 0 -complete. For each n ≥ 2, the collection of real numbers that are normal or simply normal to base n is Π 3 0 -complete. Moreover, D , the...

Currently displaying 81 – 100 of 192