Displaying 261 – 280 of 3919

Showing per page

A Riesz representation theory for completely regular Hausdorff spaces and its applications

Marian Nowak (2016)

Open Mathematics

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let Cb(X, E) be the space of all E-valued bounded, continuous functions on X, equipped with the strict topology β. We develop the Riemman-Stieltjes-type Integral representation theory of (β, || · ||F) -continuous operators T : Cb(X, E) → F with respect to the representing Borel operator measures. For X being a k-space, we characterize strongly bounded (β, || · ||F)-continuous operators T : Cb(X, E) → F. As an application, we...

A rough curvature-dimension condition for metric measure spaces

Anca-Iuliana Bonciocat (2014)

Open Mathematics

We introduce and study a rough (approximate) curvature-dimension condition for metric measure spaces, applicable especially in the framework of discrete spaces and graphs. This condition extends the one introduced by Karl-Theodor Sturm, in his 2006 article On the geometry of metric measure spaces II, to a larger class of (possibly non-geodesic) metric measure spaces. The rough curvature-dimension condition is stable under an appropriate notion of convergence, and stable under discretizations as...

A saddle-point approach to the Monge-Kantorovich optimal transport problem

Christian Léonard (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.

A saddle-point approach to the Monge-Kantorovich optimal transport problem

Christian Léonard (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.

A Sard type theorem for Borel mappings

Piotr Hajłasz (1994)

Colloquium Mathematicae

We find a condition for a Borel mapping f : m n which implies that the Hausdorff dimension of f - 1 ( y ) is less than or equal to m-n for almost all y n .

A scalar Volterra derivative for the PoU-integral

V. Marraffa (2005)

Mathematica Bohemica

A weak form of the Henstock Lemma for the P o U -integrable functions is given. This allows to prove the existence of a scalar Volterra derivative for the P o U -integral. Also the P o U -integrable functions are characterized by means of Pettis integrability and a condition involving finite pseudopartitions.

A simple formula for an analogue of conditional Wiener integrals and its applications. II

Dong Hyun Cho (2009)

Czechoslovak Mathematical Journal

Let C [ 0 , T ] denote the space of real-valued continuous functions on the interval [ 0 , T ] with an analogue w ϕ of Wiener measure and for a partition 0 = t 0 < t 1 < < t n < t n + 1 = T of [ 0 , T ] , let X n C [ 0 , T ] n + 1 and X n + 1 C [ 0 , T ] n + 2 be given by X n ( x ) = ( x ( t 0 ) , x ( t 1 ) , , x ( t n ) ) and X n + 1 ( x ) = ( x ( t 0 ) , x ( t 1 ) , , x ( t n + 1 ) ) , respectively. In this paper, using a simple formula for the conditional w ϕ -integral of functions on C [ 0 , T ] with the conditioning function X n + 1 , we derive a simple formula for the conditional w ϕ -integral of the functions with the conditioning function X n . As applications of the formula with the function X n , we evaluate the conditional w ϕ -integral...

A simple proof of the Borel extension theorem and weak compactness of operators

Ivan Dobrakov, Thiruvaiyaru V. Panchapagesan (2002)

Czechoslovak Mathematical Journal

Let T be a locally compact Hausdorff space and let C 0 ( T ) be the Banach space of all complex valued continuous functions vanishing at infinity in T , provided with the supremum norm. Let X be a quasicomplete locally convex Hausdorff space. A simple proof of the theorem on regular Borel extension of X -valued σ -additive Baire measures on T is given, which is more natural and direct than the existing ones. Using this result the integral representation and weak compactness of a continuous linear map u C 0 ( T ) X when...

Currently displaying 261 – 280 of 3919