Displaying 1021 – 1040 of 3919

Showing per page

Entropy of a doubly stochastic Markov operator and of its shift on the space of trajectories

Paulina Frej (2012)

Colloquium Mathematicae

We define the space of trajectories of a doubly stochastic operator on L¹(X,μ) as a shift space ( X , ν , σ ) , where ν is a probability measure defined as in the Ionescu-Tulcea theorem and σ is the shift transformation. We study connections between the entropy of a doubly stochastic operator and the entropy of the shift on the space of trajectories of this operator.

Entropy on effect algebras with the Riesz decomposition property I: Basic properties

Antonio Di Nola, Anatolij Dvurečenskij, Marek Hyčko, Corrado Manara (2005)

Kybernetika

We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.

Equations containing locally Henstock-Kurzweil integrable functions

Seppo Heikkilä, Guoju Ye (2012)

Applications of Mathematics

A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.

Equidecomposability of Jordan domains under groups of isometries

M. Laczkovich (2003)

Fundamenta Mathematicae

Let G d denote the isometry group of d . We prove that if G is a paradoxical subgroup of G d then there exist G-equidecomposable Jordan domains with piecewise smooth boundaries and having different volumes. On the other hand, we construct a system d of Jordan domains with differentiable boundaries and of the same volume such that d has the cardinality of the continuum, and for every amenable subgroup G of G d , the elements of d are not G-equidecomposable; moreover, their interiors are not G-equidecomposable...

Equilibrium measures for holomorphic endomorphisms of complex projective spaces

Mariusz Urbański, Anna Zdunik (2013)

Fundamenta Mathematicae

Let f: ℙ → ℙ be a holomorphic endomorphism of a complex projective space k , k ≥ 1, and let J be the Julia set of f (the topological support of the unique maximal entropy measure). Then there exists a positive number κ f > 0 such that if ϕ: J → ℝ is a Hölder continuous function with s u p ( ϕ ) - i n f ( ϕ ) < κ f , then ϕ admits a unique equilibrium state μ ϕ on J. This equilibrium state is equivalent to a fixed point of the normalized dual Perron-Frobenius operator. In addition, the dynamical system ( f , μ ϕ ) is K-mixing, whence ergodic. Proving...

Currently displaying 1021 – 1040 of 3919