Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature
Jones and Rosenblatt started the study of an ergodic transform which is analogous to the martingale transform. In this paper we present a unified treatment of the ergodic transforms associated to positive groups induced by nonsingular flows and to general means which include the usual averages, Cesàro-α averages and Abel means. We prove the boundedness in , 1 < p < ∞, of the maximal ergodic transforms assuming that the semigroup is Cesàro bounded in . For p = 1 we find that the maximal ergodic...
On montre que les produits de Riesz sur le tore sont des mesures ergodiques sous une condition de lacunarité pour les fréquences, indépendamment de toute propriété arithmétique, et que cette condition est la meilleure possible de ce point de vue. On établit un critère analogue pour la propriété de pureté discutés précédemment par B. Host et l’auteur, ce qui fournit l’exemple d’une mesure pure étrangère à toutes ses translatées et en particulier non ergodique.
Let α be an ergodic rotation of the d-torus . For any piecewise smooth function with sufficiently regular pieces the unitary operator Vh(x) = exp(2π if(x))h(x + α) acting on is shown to have a continuous non-Dirichlet spectrum if the gradient of f has nonzero integral. In particular, the resulting skew product must be ergodic. If in addition α is sufficiently well approximated by rational vectors and f is represented by a linear function with noninteger coefficients then the spectrum of V...