Fraktální geometrie
“The kernel functor” from the category of archimedean lattice-ordered groups with distinguished weak unit onto LFrm, of Lindelöf completely regular frames, preserves and reflects monics. In , monics are one-to-one, but not necessarily so in LFrm. An embedding for which is one-to-one is termed kernel-injective, or KI; these are the topic of this paper. The situation is contrasted with kernel-surjective and -preserving (KS and KP). The -objects every embedding of which is KI are characterized;...
Associated with every vector measure m taking its values in a Fréchet space X is the space L1(m) of all m-integrable functions. It turns out that L1(m) is always a Fréchet lattice. We show that possession of the AL-property for the lattice L1(m) has some remarkable consequences for both the underlying Fréchet space X and the integration operator f → ∫ f dm.
Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph...
Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space to be norm convergent (resp. relatively norm compact), thus extending the known results for . Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in . It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence....
We consider two types of Besov spaces on the closed snowflake, defined by traces and with the help of the homeomorphic map from the interval [0,3]. We compare these spaces and characterize them in terms of Daubechies wavelets.
We study a class of functions which differ essentially from those which are the sum of a convex function and a regular one and which have interesting properties related to -convergence and to problems with non-convex constraints. In particular some results are given for the associated evolution equations.