Displaying 1781 – 1800 of 3925

Showing per page

Mesures invariantes ergodiques pour des produits gauches

Albert Raugi (2007)

Bulletin de la Société Mathématique de France

Soit ( X , 𝔛 ) un espace mesurable muni d’une transformation bijective bi-mesurable τ . Soit ϕ une application mesurable de X dans un groupe localement compact à base dénombrable G . Nous notons τ ϕ l’extension de τ , induite par ϕ , au produit X × G . Nous donnons une description des mesures positives τ ϕ -invariantes et ergodiques. Nous obtenons aussi une généralisation du théorème de réduction cohomologique de O.Sarig [5] à un groupe LCD quelconque.

Mesures invariantes pour les fractions rationnelles géométriquement finies

Guillaume Havard (1999)

Fundamenta Mathematicae

Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if p ( T ) + 1 p ( T ) δ > 2 . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.

Metric Diophantine approximation on the middle-third Cantor set

Yann Bugeaud, Arnaud Durand (2016)

Journal of the European Mathematical Society

Let μ 2 be a real number and let ( μ ) denote the set of real numbers approximable at order at least μ by rational numbers. More than eighty years ago, Jarník and, independently, Besicovitch established that the Hausdorff dimension of ( μ ) is equal to 2 / μ . We investigate the size of the intersection of ( μ ) with Ahlfors regular compact subsets of the interval [ 0 , 1 ] . In particular, we propose a conjecture for the exact value of the dimension of ( μ ) intersected with the middle-third Cantor set and give several results...

Currently displaying 1781 – 1800 of 3925