Nonlinear integrals
This paper is devoted to the following question. Suppose that a Polish group G has the property that some non-empty open subset U is covered by finitely many two-sided translates of every other non-empty open subset of G. Is then G necessarily locally compact? Polish groups which do not have the above property are called strongly non-locally compact. We characterize strongly non-locally compact Polish subgroups of in terms of group actions, and prove that certain natural classes of non-locally...
We present a theorem which generalizes some known theorems on the existence of nonmeasurable (in various senses) sets of the form X+Y. Some additional related questions concerning measure, category and the algebra of Borel sets are also studied.
We investigate the problem if every compact space K carrying a Radon measure of Maharam type κ can be continuously mapped onto the Tikhonov cube (κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ κ this holds if and only if κ is a precaliber of measure algebras. Assuming that there is a family of null sets in such that every perfect set meets one of them, we construct a compact space showing that the answer to the above problem is “no” for κ = ω. We also give alternative proofs...
We establish that for a fairly general class of topologically transitive dynamical systems, the set of non-transitive points is very small when the rate of transitivity is very high. The notion of smallness that we consider here is that of σ-porosity, and in particular we show that the set of non-transitive points is σ-porous for any subshift that is a factor of a transitive subshift of finite type, and for the tent map of [0,1]. The result extends to some finite-to-one factor systems. We also show...
Let , where is a measurable space, and a topological space. We study inclusions between three classes of extended real-valued functions on which are upper semicontinuous in and satisfy some measurability conditions.
Let be a sequence of bases with . In the case when the are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose -Cantor series expansion is both -normal and -distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of , and from this construction we can provide computable constructions of numbers with atypical normality properties.