The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 11 of 11

Showing per page

Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group

Bernd Kirchheim, Francesco Serra Cassano (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We construct an intrinsic regular surface in the first Heisenberg group 1 3 equipped wiht its Carnot-Carathéodory metric which has euclidean Hausdorff dimension  2 . 5 . Moreover we prove that each intrinsic regular surface in this setting is a 2 -dimensional topological manifold admitting a 1 2 -Hölder continuous parameterization.

Regularity of sets with constant intrinsic normal in a class of Carnot groups

Marco Marchi (2014)

Annales de l’institut Fourier

In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type ” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano in step...

Research Article. Multiscale Analysis of 1-rectifiable Measures II: Characterizations

Matthew Badger, Raanan Schul (2017)

Analysis and Geometry in Metric Spaces

A measure is 1-rectifiable if there is a countable union of finite length curves whose complement has zero measure. We characterize 1-rectifiable Radon measures μ in n-dimensional Euclidean space for all n ≥ 2 in terms of positivity of the lower density and finiteness of a geometric square function, which loosely speaking, records in an L2 gauge the extent to which μ admits approximate tangent lines, or has rapidly growing density ratios, along its support. In contrast with the classical theorems...

Currently displaying 1 – 11 of 11

Page 1