Mapping properties of log log g' (z)
In this paper we consider the extensions of quasiconformal mappings f: B → Ωs to the whole plane, when the domain Ωs is a domain with a cusp of degree s > 0 and thus not an quasidisc. While these mappings do not have quasiconformal extensions, they may have extensions that are homeomorphic mappings of finite distortion with an exponentially integrable distortion, but in such a case ∫2B exp(λK(x)) dx = ∞ for all λ > 1/s. Conversely, for a given s > 0 such a mapping is constructed...
We establish continuity, openness and discreteness, and the condition (N) for mappings of finite distortion under minimal integrability assumptions on the distortion.
It is shown that a Banach space admits an equivalent norm whose modulus of uniform convexity has power-type if and only if it is Markov -convex. Counterexamples are constructed to natural questions related to isomorphic uniform convexity of metric spaces, showing in particular that tree metrics fail to have the dichotomy property.
The Cauchy integral method has been applied to derive exact and closed expressions for Goursat's functions for the first and second fundamental problems for an infinite thermoelastic plate weakened by a hole having arbitrary shape. The plate considered is conformally mapped to the area of the right half-plane. Many previous discussions of various authors can be considered as special cases of this work. The shape of the hole being an ellipse, a crescent, a triangle, or a cut having the shape of a...