Displaying 721 – 740 of 6204

Showing per page

Bérenger/Maxwell with Discontinous Absorptions : Existence, Perfection, and No Loss

Laurence Halpern, Jeffrey Rauch (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

We analyse Bérenger’s split algorithm applied to the system version of the two dimensional wave equation with absorptions equal to Heaviside functions of x j , j = 1 , 2 . The methods form the core of the analysis [11] for three dimensional Maxwell equations with absorptions not necessarily piecewise constant. The split problem is well posed, has no loss of derivatives (for divergence free data in the case of Maxwell), and is perfectly matched.

Bergman coordinates

Steven R. Bell (2006)

Studia Mathematica

Various incarnations of Stefan Bergman's notion of representative coordinates will be given that are useful in a variety of contexts. Bergman wanted his coordinates to map to canonical regions, but they fail to do this for multiply connected regions. We show, however, that it is possible to define generalized Bergman coordinates that map multiply connected domains to quadrature domains which satisfy a long list of desirable properties, making them excellent candidates to be called Bergman representative...

Currently displaying 721 – 740 of 6204