Displaying 761 – 780 of 6204

Showing per page

Bilipschitz embeddings of metric spaces into euclidean spaces.

Stephen Semmes (1999)

Publicacions Matemàtiques

When does a metric space admit a bilipschitz embedding into some finite-dimensional Euclidean space? There does not seem to be a simple answer to this question. Results of Assouad [A1], [A2], [A3] do provide a simple answer if one permits some small ("snowflake") deformations of the metric, but unfortunately these deformations immediately disrupt some basic aspects of geometry and analysis, like rectifiability, differentiability, and curves of finite length. Here we discuss a (somewhat technical)...

Bilipschitz extensions from smooth manifolds.

Taneli Huuskonen, Juha Partanen, Jussi Väisälä (1995)

Revista Matemática Iberoamericana

We prove that every compact C1-submanifold of Rn, with or without boundary, has the bilipschitz extension property in Rn.

Blaschke product generated covering surfaces

Ilie Barza, Dorin Ghisa (2009)

Mathematica Bohemica

It is known that, under very general conditions, Blaschke products generate branched covering surfaces of the Riemann sphere. We are presenting here a method of finding fundamental domains of such coverings and we are studying the corresponding groups of covering transformations.

Boundary approach filters for analytic functions

J. L. Doob (1973)

Annales de l'institut Fourier

Let H be the class of bounded analytic functions on D : | z | < 1 , and let D be the set of maximal ideals of the algebra H , a compactification of D . The relations between functions in H and their cluster values on D - D are studied. Let D 1 be the subset of D over the point 1. A subset A of D 1 is a “Fatou set” if every f in H has a limit at e i θ A for almost every θ . The nontangential subset of D 1 is a Fatou set according to the Fatou theorem. There are many larger Fatou sets, for example the fine topology subset of D 1 but...

Boundary asymptotics of the relative Bergman kernel metric for hyperelliptic curves

Robert Xin Dong (2017)

Complex Manifolds

We survey variations of the Bergman kernel and their asymptotic behaviors at degeneration. For a Legendre family of elliptic curves, the curvature form of the relative Bergman kernel metric is equal to the Poincaré metric on ℂ 0,1. The cases of other elliptic curves are either the same or trivial. Two proofs depending on elliptic functions’ special properties and Abelian differentials’ Taylor expansions are discussed, respectively. For a holomorphic family of hyperelliptic nodal or cuspidal curves...

Boundary behavior and Cesàro means of universal Taylor series.

Frédéric Bayart (2006)

Revista Matemática Complutense

We study boundary properties of universal Taylor series. We prove that if f is a universal Taylor series on the open unit disk, then there exists a residual subset G of the unit circle such that f is unbounded on all radii with endpoints in G. We also study the effect of summability methods on universal Taylor series. In particular, we show that a Taylor series is universal if and only if its Cesàro means are universal.

Currently displaying 761 – 780 of 6204