Convolution properties of some classes of analytic functions
Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let . For λ > 0, suppose that denotes any one of the following classes of functions: , , . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in or , γ ∈ [0,1/2]. Here and respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain a number...
We first prove that the convolution of a normalized right half-plane mapping with another subclass of normalized right half-plane mappings with the dilatation [...] −z(a+z)/(1+az) is CHD (convex in the horizontal direction) provided [...] a=1 or [...] −1≤a≤0 . Secondly, we give a simply method to prove the convolution of two special subclasses of harmonic univalent mappings in the right half-plane is CHD which was proved by Kumar et al. [1, Theorem 2.2]. In addition, we derive the convolution...
For n ∈ ℕ, L > 0, and p ≥ 1 let be the largest possible value of k for which there is a polynomial P ≢ 0 of the form , , , such that divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that . We find the size of and for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even in that special...