Displaying 1201 – 1220 of 6204

Showing per page

Déformations de flots d'Anosov et de groupes fuchsiens

Étienne Ghys (1992)

Annales de l'institut Fourier

Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe C . Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.

Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique

Feliks Przytycki, Anna Zdunik (1994)

Fundamenta Mathematicae

We prove that if A is a basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, then the periodic points in the boundary of A are dense in this boundary. To prove this in the non-simply connected or parabolic situations we prove a more abstract, geometric coding trees version.

Density of Polynomials in the L^2 Space on the Real and the Imaginary Axes and in a Sobolev Space

Klotz, Lutz, Zagorodnyuk, Sergey M. (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 41A10, 30E10, 41A65.In this paper we consider an L^2 type space of scalar functions L^2 M, A (R u iR) which can be, in particular, the usual L^2 space of scalar functions on R u iR. We find conditions for density of polynomials in this space using a connection with the L^2 space of square-integrable matrix-valued functions on R with respect to a non-negative Hermitian matrix measure. The completness of L^2 M, A (R u iR ) is also established.

Derivative and antiderivative operators and the size of complex domains

Luis Bernal-González (1994)

Annales Polonici Mathematici

We prove some conditions on a complex sequence for the existence of universal functions with respect to sequences of certain derivative and antiderivative operators related to it. These operators are defined on the space of holomorphic functions in a complex domain. Conditions for the equicontinuity of those sequences are also studied. The conditions depend upon the size of the domain.

Currently displaying 1201 – 1220 of 6204