Displaying 1481 – 1500 of 6204

Showing per page

Ergodic theory of interval exchange maps.

Marcelo Viana (2006)

Revista Matemática Complutense

A unified introduction to the dynamics of interval exchange maps and related topics, such as the geometry of translation surfaces, renormalization operators, and Teichmüller flows, starting from the basic definitions and culminating with the proof that almost every interval exchange map is uniquely ergodic. Great emphasis is put on examples and geometric interpretations of the main ideas.

Ergodic Universality Theorems for the Riemann Zeta-Function and other L -Functions

Jörn Steuding (2013)

Journal de Théorie des Nombres de Bordeaux

We prove a new type of universality theorem for the Riemann zeta-function and other L -functions (which are universal in the sense of Voronin’s theorem). In contrast to previous universality theorems for the zeta-function or its various generalizations, here the approximating shifts are taken from the orbit of an ergodic transformation on the real line.

Erratum to “Tchebotaröv’s extremal problem”

Promarz Tamrazov (2009)

Open Mathematics

The original version of the article was published in Central European Journal of Mathematics, 2005, 3(4), 591–605. Unfortunately, the original version of this article contains a mistake. We give some corrections to our work.

Erratum to the paper "On the disc theorem" (Ann. Polon. Math. 55 (1991), 1-10)

Cabiria Andreian Cazacu (1992)

Annales Polonici Mathematici

Due to a technical error, part of a sentence was omitted on the top of page 8. The first line should read: “where f p k , p = a l or b l , means the number of folds of the covering ( δ k ' ' , T | , Δ l ' ' ) ending at p, i.e. covering a neighbourhood of p in a l b l without covering p itself”.

Currently displaying 1481 – 1500 of 6204