Extension a la dimension n d'un théorème de Ortel et Schneider.
The purpose of this article is twofold. The first is to show a criterion for the normality of holomorphic mappings into Abelian varieties; an extension theorem for such mappings is also given. The second is to study the convergence of meromorphic mappings into complex projective varieties. We introduce the concept of d-convergence and give a criterion of d-normality of families of meromorphic mappings.
We study a rigidity property, at the vertex of some plane sector, for Gevrey classes of holomorphic functions in the sector. For this purpose, we prove a linear continuous version of Borel-Ritt's theorem with Gevrey conditions
The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for -spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.
MSC 2010: 30C10The classical notion of apolarity is defined for two algebraic polynomials of equal degree. The main property of two apolar polynomials p and q is the classical Grace theorem: Every circular domain containing all zeros of p contains at least one zero of q and vice versa. In this paper, the definition of apolarity is extended to polynomials of different degree and an extension of the Grace theorem is proved. This leads to simplification of the conditions of several well-known results...