On harmonic functions constructed by the Hadamard product.
This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.
The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator on is proved. In this note there is shown that in the cases , no other transforms of this kind exist and for case , all such transforms are described.
Let F be an analytic function from an open subset Ω of the complex plane into the algebra of n×n matrices. Denoting by the decreasing sequence of singular values of a matrix, we prove that the functions and are subharmonic on Ω for 1 ≤ k ≤ n.
In this paper we prove the continuity of fractional integrals acting on nonhomogeneous function spaces defined on spaces of homogeneous type with finite measure. A definition of the molecules which are used in the theory is given. Results are proved for , , BMO, and Lipschitz spaces.
The problem of a thin elastic plate, deflection of which is limited below by a rigid obstacle is solved. Using Ahlin's and Ari-Adini's elements on rectangles, the convergence is established and SOR method with constraints is proposed for numerical solution.
We prove that if is harmonic and there exists a polynomial such that f + W is nonnegative, then f is a polynomial.