The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 961 –
980 of
1784
This paper deals with the questions of the existence and uniqueness of a solution to the Dirichlet problem associated with the Dunkl Laplacian as well as the hypoellipticity of on noninvariant open sets.
Let be a simplicial function space on a metric compact space . Then the Choquet boundary of is an -set if and only if given any bounded Baire-one function on there is an -affine bounded Baire-one function on such that on . This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set .
We consider the general Schrödinger operator on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity considered by Zhao and Pinchover. As an application we study the cone of all positive L-solutions continuously vanishing...
In this paper we deal with the stationary Navier-Stokes problem in a domain with compact Lipschitz boundary and datum in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of , with possible countable exceptional set, provided is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for bounded.
We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.
We characterize the Hunt convolution kernels on () whose the Green type kernels on ; ,
We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.
Currently displaying 961 –
980 of
1784