The search session has expired. Please query the service again.
Displaying 1081 –
1100 of
1784
Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in ℂⁿ. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.
To a plurisubharmonic function on with logarithmic growth at infinity, we may associate the Robin functiondefined on , the hyperplane at infinity. We study the classes , and (respectively) of plurisubharmonic functions which have the form and (respectively) for which the function is not identically . We obtain an integral formula which connects the Monge-Ampère measure on the space with the Robin function on . As an application we obtain a criterion on the convergence of the Monge-Ampère...
A certain linear growth of the pluricomplex Green function of a bounded convex domain of at a given boundary point is related to the existence of a certain plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.
Given a nondegenerate harmonic structure, we prove a Poincaré-type inequality for functions in the domain of the Dirichlet form on nested fractals. We then study the Hajłasz-Sobolev spaces on nested fractals. In particular, we describe how the "weak"-type gradient on nested fractals relates to the upper gradient defined in the context of general metric spaces.
We shall characterize the sets of locally uniform convergence of pointwise convergent sequences. Results obtained for sequences of holomorphic functions by Hartogs and Rosenthal in 1928 will be generalized for many other sheaves of functions. In particular, our Hartogs-Rosenthal type theorem holds for the sheaf of solutions to the second order elliptic PDE's as well as it has applications to the theory of harmonic spaces.
We prove that a function belonging to a fractional Sobolev space may be approximated in capacity and norm by smooth functions belonging to , 0 < m + λ < α. Our results generalize and extend those of [12], [4], [14], and [11].
We get a class of pointwise inequalities for Sobolev functions. As a corollary we obtain a short proof of Michael-Ziemer’s theorem which states that Sobolev functions can be approximated by functions both in norm and capacity.
The aim of this paper is to give a description of the Poisson kernel and the Green function of balls in the complex hyperbolic space. The description is in terms of the hypergeometric function and unitary spherical harmonics in ℂⁿ.
In this paper, we give a sharp estimate on the dimension of the space of polynomial growth harmonic functions with fixed degree on a complete Riemannian manifold, under various assumptions.
Currently displaying 1081 –
1100 of
1784