Subharmonic Functions on Real and Complex Manifolds.
Let ℳ be a von Neumann algebra with unit . Let τ be a faithful, normal, semifinite trace on ℳ. Given x ∈ ℳ, denote by the generalized s-numbers of x, defined by = inf||xe||: e is a projection in ℳ i with ≤ t (t ≥ 0). We prove that, if D is a complex domain and f:D → ℳ is a holomorphic function, then, for each t ≥ 0, is a subharmonic function on D. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.
Let be the boundary of the unit ball of . A set of second order linear partial differential operators, tangential to , is explicitly given in such a way that, for , the corresponding PDE caractherize the trace of the solution of the pluriharmonic problem (either “in the large” or “local”), relative to .
Let be an open set in and be a subset of . We characterize those pairs which permit the extension of superharmonic functions from to , or the approximation of functions on by harmonic functions on .
The objective of our note is to prove that, at least for a convex domain, the ground state of the p-Laplacian operatorΔpu = div (|∇u|p-2 ∇u)is a superharmonic function, provided that 2 ≤ p ≤ ∞. The ground state of Δp is the positive solution with boundary values zero of the equationdiv(|∇u|p-2 ∇u) + λ |u|p-2 u = 0in the bounded domain Ω in the n-dimensional Euclidean space.
Dans le cadre axiomatique de M. Brelot et R.-M. Hervé (cas y compris l’axiome de domination) on montre que, pour tout domaine par rapport à la topologie fine et pour tout point , la fonction (“fine ”) de Green pour à pôle est caractérisée (à un facteur constant près) comme un potentiel fin relatif à qui est finement harmonique dans .
Soit une fonction harmonique définie hors d’un compact d’un espace harmonique de Brelot sans potentiel , on définit directement, c’est-à-dire sans les théorèmes de Nakaï, le flux de relativement à une fonction harmonique fixée , définie hors d’un compact. On donne ensuite une construction de la mesure intervenant dans les théorèmes de Nakaï, sans utiliser la théorie de Riesz-Schauder.
On montre qu’une forme de Dirichlet est décomposable de manière unique en deux formes intégrales et une forme locale. On indique l’expression de cette partie locale dans un cas régulier.