Displaying 161 – 180 of 198

Showing per page

Analytic potential theory over the p -adics

Shai Haran (1993)

Annales de l'institut Fourier

Over a non-archimedean local field the absolute value, raised to any positive power α > 0 , is a negative definite function and generates (the analogue of) the symmetric stable process. For α ( 0 , 1 ) , this process is transient with potential operator given by M. Riesz’ kernel. We develop this potential theory purely analytically and in an explicit manner, obtaining special features afforded by the non-archimedean setting ; e.g. Harnack’s inequality becomes an equality.

Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-dGFEM

Ralf Hiptmair, Andrea Moiola, Ilaria Perugia, Christoph Schwab (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a δ-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on δ. We apply the obtained estimates...

Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques

A. de La Pradelle (1967)

Annales de l'institut Fourier

Dans le cadre de l’axiomatique de M. Brelot, et en utilisant la théorie des fonctions harmoniques adjointes de Madame R.M. Hervé, on caractérise la propriété de quasi-analycité notée A *  : toute fonction harmonique adjointe dans un domaine est nulle dès qu’elle est nulle au voisinage d’un point. On montre que A * est équivalente à une propriété d’approximation de toute fonction réelle finie continue sur les frontières d’ouverts relativement compacts. Cette approximation est réalisée à l’aide de différences...

Approximation of harmonic functions

Björn E. J. Dahlberg (1980)

Annales de l'institut Fourier

Let u be harmonic in a bounded domain D with smooth boundary. We prove that if the boundary values of u belong to L p ( σ ) , where p 2 and σ denotes the surface measure of D , then it is possible to approximate u uniformly by function of bounded variation. An example is given that shows that this result does not extend to p < 2 .

Currently displaying 161 – 180 of 198