Previous Page 10

Displaying 181 – 198 of 198

Showing per page

Approximations by regular sets and Wiener solutions in metric spaces

Anders Björn, Jana Björn (2007)

Commentationes Mathematicae Universitatis Carolinae

Let X be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of X can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for p -harmonic functions and to show that they coincide with three other notions of generalized solutions.

Asymptotic behavior of the invariant measure for a diffusion related to an NA group

Ewa Damek, Andrzej Hulanicki (2006)

Colloquium Mathematicae

On a Lie group NA that is a split extension of a nilpotent Lie group N by a one-parameter group of automorphisms A, the heat semigroup μ t generated by a second order subelliptic left-invariant operator j = 0 m Y j + Y is considered. Under natural conditions there is a μ ̌ t -invariant measure m on N, i.e. μ ̌ t * m = m . Precise asymptotics of m at infinity is given for a large class of operators with Y₀,...,Yₘ generating the Lie algebra of S.

Axiomatique des fonctions biharmoniques. I

Emmanuel P. Smyrnelis (1975)

Annales de l'institut Fourier

Les théories axiomatiques existantes de fonctions harmoniques ne s’appliquent pas à des équations simples d’ordre > 2 , comme l’équation biharmonique Δ 2 u = Δ ( Δ u ) = 0 ou le système équivalent Δ u 1 = - u 2 , Δ u 2 = 0 .On développe donc ici, au moyen d’un faisceau de couples convenables de fonctions ( u 1 , u 2 ) une approche axiomatique locale applicable à des équations du type L 2 ( L 1 u ) = 0 , où L j ( j = 1 , 2 ) est un opérateur linéaire du second ordre elliptique ou parabolique. Deux axiomatiques harmoniques lui sont associées. On traite, dans ce cadre, le problème (généralisé)...

Axiomatique des fonctions biharmoniques. II

Emmanuel P. Smyrnelis (1976)

Annales de l'institut Fourier

Dans un espace biharmonique, on définit un balayage de couples de mesures et, en particulier, on retrouve les trois mesures du problème de Riquier. Une de ces mesures n’étant pas harmonique, son étude présente un certain intérêt. On établit, dans ce cadre, des inégalités de type Harnack et on introduit les fonctions hyperharmoniques d’ordre 2. Le problème de la construction d’un espace biharmonique à partir de deux espaces harmoniques est aussi étudié. Enfin, on donne des applications de la théorie...

Currently displaying 181 – 198 of 198

Previous Page 10