The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
192 of
192
An isolated point of intersection of two analytic sets is considered. We give a sharp estimate of their regular separation exponent in terms of intersection multiplicity and local degrees.
The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.
Let be a measure on a domain in such that the Bergman space
of holomorphic functions in possesses a reproducing kernel and
. The Berezin transform associated to is the
integral...
In this paper, we consider an analytic family of holomorphic mappings and the sequence of iterates of . If the sequence is not compactly divergent, there exists an unique retraction adherent to the sequence . If is a strictly convex taut domain in and if the image of is of dimension , we prove that does not depend from . We apply this result to the existence of fixed points of holomorphic mappings on the product of two bounded strictly convex domains.
Currently displaying 181 –
192 of
192