Displaying 201 – 220 of 301

Showing per page

Étude des jets de Demailly-Semple en dimension 3

Erwan Rousseau (2006)

Annales de l’institut Fourier

Dans cet article nous faisons l’étude algébrique des jets de Demailly-Semple en dimension 3 en utilisant la théorie des invariants des groupes non réductifs. Cette étude fournit la caractérisation géométrique du fibré des jets d’ordre 3 sur une variété de dimension 3 et permet d’effectuer, par Riemann-Roch, un calcul de caractéristique d’Euler.

Euler characteristics of moduli spaces of curves

Gilberto Bini, John Harer (2011)

Journal of the European Mathematical Society

Let M g n be the moduli space of n -pointed Riemann surfaces of genus g . Denote by M g n ¯ the Deligne-Mumford compactification of M g n . In the present paper, we calculate the orbifold and the ordinary Euler characteristic of M g n ¯ for any g and n such that n > 2 - 2 g .

Examples of functions -extendable for each finite, but not -extendable

Wiesław Pawłucki (1998)

Banach Center Publications

In Example 1, we describe a subset X of the plane and a function on X which has a k -extension to the whole 2 for each finite, but has no -extension to 2 . In Example 2, we construct a similar example of a subanalytic subset of 5 ; much more sophisticated than the first one. The dimensions given here are smallest possible.

Exceptional modular form of weight 4 on an exceptional domain contained in C27.

Henry H. Kim (1993)

Revista Matemática Iberoamericana

Resnikoff [12] proved that weights of a non trivial singular modular form should be integral multiples of 1/2, 1, 2, 4 for the Siegel, Hermitian, quaternion and exceptional cases, respectively. The θ-functions in the Siegel, Hermitian and quaternion cases provide examples of singular modular forms (Krieg [10]). Shimura [15] obtained a modular form of half-integral weight by analytically continuing an Eisenstein series. Bump and Bailey suggested the possibility of applying an analogue of Shimura's...

Existence and regularity of solutions of the δ ¯ -system on wedges of C N

Giuseppe Zampieri (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For a wedge W of C N , we introduce two conditions of weak q -pseudoconvexity, and prove that they entail solvability of the δ ¯ -system for forms of degree q + 1 with coefficients in C W and C W ¯ respectively. Existence and regularity for δ ¯ in W is treated by Hörmander [5, 6] (and also by Zampieri [9, 11] in case of piecewise smooth boundaries). Regularity in W is treated by Henkin [4] (strong q -pseudoconvexity by the method of the integral representation), Dufresnoy [3] (full pseudoconvexity), Michel [8] (constant...

Existence domains for holomorphic Lp functions.

Nicholas J. Daras (1994)

Publicacions Matemàtiques

If Ω is a domain of holomorphy in Cn, having a compact topological closure into another domain of holomorphy U ⊂ Cn such that (Ω,U) is a Runge pair, we construct a function F holomorphic in Ω which is singular at every boundary point of Ω and such that F is in Lp(Ω), for any p ∈ (0, +∞).

Currently displaying 201 – 220 of 301