Inner -th Carathéodory-Reiffen completeness of Reinhardt domains
A description of bounded pseudoconvex Reinhardt domains, which are complete with respect to the inner -th Carathéodory-Reiffen distance, is given.
A description of bounded pseudoconvex Reinhardt domains, which are complete with respect to the inner -th Carathéodory-Reiffen distance, is given.
We study the normalization of analytic vector fields with a nilpotent linear part. We prove that such an analytic vector field can be transformed into a certain form by convergent transformations when it has a non-singular formal integral. We then prove that there are smoothly linearizable parabolic analytic transformations which cannot be embedded into the flows of any analytic vector fields with a nilpotent linear part.
We give a necessary condition for a holomorphic vector field to induce an integrable osculating plane distribution and, using this condition, we give a characterization of such fields. We also give a generic classification for vector fields which have two invariant coordinate planes.
We construct a variant of Koppelman's formula for (0,q)-forms with values in a line bundle, O(l), on projective space. The formula is then applied to a study of a Radon transform for (0,q)-forms, introduced by Gindikin-Henkin-Polyakov. Our presentation follows along the basic lines of Henkin-Polyakov [3], with some simplifications.
Let be two regular functions from the smooth affine complex variety to the affine line. The associated exponential Gauß-Manin systems on the affine line are defined to be the cohomology sheaves of the direct image of the exponential differential system with respect to . We prove that its holomorphic solutions admit representations in terms of period integrals over topological chains with possibly closed support and with rapid decay condition.
In 1945 the first author introduced the classes , 1 ≤ p<∞, α > -1, of holomorphic functions in the unit disk with finite integral (1) ∬ |f(ζ)|p (1-|ζ|²)α dξ dη < ∞ (ζ=ξ+iη) and established the following integral formula for : (2) f(z) = (α+1)/π ∬ f(ζ) ((1-|ζ|²)α)/((1-zζ̅)2+α) dξdη, z∈ . We have established that the analogues of the integral representation (2) hold for holomorphic functions in Ω from the classes , where: 1) , ; 2) Ω is the matrix domain consisting of those complex m...