Pseudo holomorphic curves in symplectic manifolds.
Soit un ouvert relativement compact et localement pseudo-convexe de la variété analytique .Alors,1) Si le fibré tangent est positif, est -convexe.2) Si admet une fonction strictement plurisousharmonique, est de Stein.3) Si est l’espace total d’un morphisme de Stein à base de Stein, est de Stein.
Let be a compact connected Kähler manifold equipped with an anti-holomorphic involution which is compatible with the Kähler structure. Let be a connected complex reductive affine algebraic group equipped with a real form . We define pseudo-real principal -bundles on . These are generalizations of real algebraic principal -bundles over a real algebraic variety. Next we define stable, semistable and polystable pseudo-real principal -bundles. Their relationships with the usual stable, semistable...
We present an effective and elementary method of determining the topological type of a cuspidal plane curve singularity with given local parametrization.