Displaying 321 – 340 of 5576

Showing per page

A Wong-Rosay type theorem for proper holomorphic self-maps

Emmanuel Opshtein (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

In this short paper, we show that the only proper holomorphic self-maps of bounded domains in k whose iterates approach a strictly pseudoconvex point of the boundary are automorphisms of the euclidean ball. This is a Wong-Rosay type theorem for a sequence of maps whose degrees are a priori unbounded.

Abelian integrals in holomorphic foliations.

Hossein Movasati (2004)

Revista Matemática Iberoamericana

The aim of this paper is to introduce the theory of Abelian integrals for holomorphic foliations in a complex manifold of dimension two. We will show the importance of Picard-Lefschetz theory and the classification of relatively exact 1-forms in this theory. As an application we identify some irreducible components of the space of holomorphic foliations of a fixed degree and with a center singularity in the projective space of dimension two. Also we calculate higher Melnikov functions under some...

About the Calabi problem: a finite-dimensional approach

H.-D. Cao, J. Keller (2013)

Journal of the European Mathematical Society

Let us consider a projective manifold M n and a smooth volume form Ω on M . We define the gradient flow associated to the problem of Ω -balanced metrics in the quantum formalism, the Ω -balancing flow. At the limit of the quantization, we prove that (see Theorem 1) the Ω -balancing flow converges towards a natural flow in Kähler geometry, the Ω -Kähler flow. We also prove the long time existence of the Ω -Kähler flow and its convergence towards Yau’s solution to the Calabi conjecture of prescribing the...

Accelero-summation of the formal solutions of nonlinear difference equations

Geertrui Klara Immink (2011)

Annales de l’institut Fourier

In 1996, Braaksma and Faber established the multi-summability, on suitable multi-intervals, of formal power series solutions of locally analytic, nonlinear difference equations, in the absence of “level 1 + ”. Combining their approach, which is based on the study of corresponding convolution equations, with recent results on the existence of flat (quasi-function) solutions in a particular type of domains, we prove that, under very general conditions, the formal solution is accelero-summable. Its sum...

Action d'une forme réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques

Jean-Jacques Loeb (1985)

Annales de l'institut Fourier

Soit G C un groupe de Lie complexe et G R une forme réelle fermée de G C . Un couple ( G C , G R ) est dit pseudo-convexe, s’il existe sur G C une fonction régulière, strictement p.s.h., invariante par l’action de G R et d’exhaustion sur G C / G R . On dit que G R est à spectre imaginaire pur, si pour tout X de Lie ( G R ) , les valeurs propres de ad X sont imaginaires pures. Pour G C à radical simplement connexe, cette dernière propriété équivaut à la pseudo-convexité de ( G C , G R ) . Pour ( G C , G R ) pseudo-convexe et sous une hypothèse de sous-groupe discret,...

Action of the Grothendieck-Teichmüller group on torsion elements of full Teichmüller modular groups in genus zero

Benjamin Collas (2012)

Journal de Théorie des Nombres de Bordeaux

In this paper we establish the action of the Grothendieck-Teichmüller group G T ^ on the prime order torsion elements of the profinite fundamental group π 1 g e o m ( 0 , [ n ] ) . As an intermediate result, we prove that the conjugacy classes of prime order torsion of π ^ 1 ( 0 , [ n ] ) are exactly the discrete prime order ones of the π 1 ( 0 , [ n ] ) .

Affine compact almost-homogeneous manifolds of cohomogeneity one

Daniel Guan (2009)

Open Mathematics

This paper is one in a series generalizing our results in [12, 14, 15, 20] on the existence of extremal metrics to the general almost-homogeneous manifolds of cohomogeneity one. In this paper, we consider the affine cases with hypersurface ends. In particular, we study the existence of Kähler-Einstein metrics on these manifolds and obtain new Kähler-Einstein manifolds as well as Fano manifolds without Kähler-Einstein metrics. As a consequence of our study, we also give a solution to the problem...

Currently displaying 321 – 340 of 5576