Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque.
We prove that Kummer threefolds with algebraic dimension have Kodaira dimension 0.
Nous appliquons les résultats d’un article précédent au domaine des fonctions différentiables. Nous obtenons en particulier des théorèmes de division et des théorèmes de fonctions composées.
We give several extensions to unbounded domains of the following classical theorem of H. Cartan: A biholomorphism between two bounded complete circular domains of Cn which fixes the origin is a linear map. In our paper, pseudo-convexity plays a main role. Some precise study is done for the case of dimension two and the case where one of the domains is Cn.
The Root Conjecture predicts that every pseudo-Anosov diffeomorphism of a closed surface has Teichmüller approximate th roots for all . In this paper, we replace the Teichmüller topology by the heights-widths topology – that is induced by convergence of tangent quadratic differentials with respect to both the heights and widths functionals – and show that every pseudo-Anosov diffeomorphism of a closed surface has heights-widths approximate th roots for all .