Bounded projections and decompositions in spaces of holomorphic functions
Let be the space of all complex m × n matrices. The generalized unit disc in is >br> . Here is the unit matrix. If 1 ≤ p < ∞ and α > -1, then is defined to be the space , where is the Lebesgue measure in , and is the subspace of holomorphic functions. In [8,9] M. M. Djrbashian and A. H. Karapetyan proved that, if (for 1 < p < ∞) and Re β ≥ α (for p = 1), then where is the integral operator defined by (0.13)-(0.14). In the present paper, given 1 ≤ p <...
Every homogeneous circular convex domain (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group of all biholomorphic automorphisms of and its isotropy subgroup at the origin (a maximal compact subgroup of ). The group acts in a natural way on the compact dual of (a certain compactification of that generalizes the Riemann sphere in case is the unit disk in ). Various authors have studied the orbit structure of the -space , here we are interested...
We prove a sufficient condition for products of Toeplitz operators , where f,g are square integrable holomorphic functions in the unit ball in ℂⁿ, to be bounded on the weighted Bergman space. This condition slightly improves the result obtained by K. Stroethoff and D. Zheng. The analogous condition for boundedness of products of Hankel operators is also given.
We study hypersurfaces of complex projective manifolds which are invariant by a foliation, or more generally which are solutions to a Pfaff equation. We bound their degree using classical results on logarithmic forms.
In rings of formal power series in several variables whose growth of coefficients is controlled by a suitable sequence (such as rings of Gevrey series), we find precise estimates for quotients F/Φ, where F and Φ are series in such that F is divisible by Φ in the usual ring of all power series. We give first a simple proof of the fact that F/Φ belongs also to , provided is stable under derivation. By a further development of the method, we obtain the main result of the paper, stating that...
Let -div be a second order elliptic operator with real, symmetric, bounded measurable coefficients on or on a bounded Lipschitz domain subject to Dirichlet boundary condition. For any fixed , a necessary and sufficient condition is obtained for the boundedness of the Riesz transform on the space. As an application, for , we establish the boundedness of Riesz transforms on Lipschitz domains for operators with coefficients. The range of is sharp. The closely related boundedness of ...
These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated...
We study the B-regularity of some classes of domains in ℂⁿ. The results include a complete characterization of B-regularity in the class of Reinhardt domains, we also give some sufficient conditions for Hartogs domains to be B-regular. The last result yields sufficient conditions for preservation of B-regularity under holomorphic mappings.
Given a holomorphic mapping of degree we give sufficient conditions on a positive closed (1,1) current of of unit mass under which converges to the Green current as . We also conjecture necessary condition for the same convergence.