Complex Paraconformal Manifolds - their Differential Geometry.
We consider the complex Plateau problem for strongly pseudoconvex contours in non-Kähler manifolds. We give a necessary and sufficient condition for the existence of solution in the class of manifolds carrying pluriclosed metric forms and propose a conjecture for the general case.
Let be a holomorphic line bundle over a compact complex manifold for . Let denote the associated principal circle-bundle with respect to some hermitian inner product on . We construct complex structures on which we refer to as scalar, diagonal, and linear types. While scalar type structures always exist, the more general diagonal but non-scalar type structures are constructed assuming that are equivariant -bundles satisfying some additional conditions. The linear type complex structures...
Data una varietà Riemanniana orientata , il fibrato principale di basi ortonormali positive su ha una parallelizzazione canonica dipendente dalla connessione di Levi-Civita. Questo fatto suggerisce la definizione di una classe molto naturale di strutture quasi-complesse su . Dopo le necessarie definizioni, discutiamo qui l'integrabilità di queste strutture, esprimendola in termini della struttura Riemanniana .
We give a concrete description of complex symmetric monomial Toeplitz operators on the weighted Bergman space , where denotes the unit ball or the unit polydisk. We provide a necessary condition for to be complex symmetric. When , we prove that is complex symmetric on if and only if and . Moreover, we completely characterize when monomial Toeplitz operators on are -symmetric with the symmetric unitary matrix .
Let Ω be a C∞-domain in Cn. It is well known that a holomorphic function on Ω behaves twice as well in complex tangential directions (see [GS] and [Kr] for instance). It follows from well known results (see [H], [RS]) that some converse is true for any kind of regular functions when Ω satisfies(P) The real tangent space is generated by the Lie brackets of real and imaginary parts of complex tangent vectorsIn this paper we are interested in the behavior of holomorphic Hardy-Sobolev functions in...
We prove a subelliptic estimate for systems of complex vector fields under some assumptions that generalize the essential pseudoconcavity for CR manifolds, that was first introduced by two of the authors, and the Hörmander’s bracket condition for real vector fields.Applications are given to prove the hypoellipticity of first order systems and second order partial differential operators.Finally we describe a class of compact homogeneous CR manifolds for which the distribution of vector fields satisfies...
A compact complex space is called complex-symmetric with respect to a subgroup of the group , if each point of is isolated fixed point of an involutive automorphism of . It follows that is almost -homogeneous. After some examples we classify normal complex-symmetric varieties with reductive. It turns out that is a product of a Hermitian symmetric space and a compact torus embedding satisfying some additional conditions. In the smooth case these torus embeddings are classified using...