Displaying 1301 – 1320 of 5576

Showing per page

Disc formulas for the weighted Siciak-Zahariuta extremal function

Benedikt Steinar Magnússon, Ragnar Sigurdsson (2007)

Annales Polonici Mathematici

We prove a disc formula for the weighted Siciak-Zahariuta extremal function V X , q for an upper semicontinuous function q on an open connected subset X in ℂⁿ. This function is also known as the weighted Green function with logarithmic pole at infinity and weighted global extremal function.

Disc functionals and Siciak-Zaharyuta extremal functions on singular varieties

Barbara Drinovec Drnovšek, Franc Forstnerič (2012)

Annales Polonici Mathematici

We establish plurisubharmonicity of envelopes of certain classical disc functionals on locally irreducible complex spaces, thereby generalizing the corresponding results for complex manifolds. We also find new formulae expressing the Siciak-Zaharyuta extremal function of an open set in a locally irreducible affine algebraic variety as the envelope of certain disc functionals, similarly to what has been done for open sets in ℂⁿ by Lempert and by Lárusson and Sigurdsson.

Disks extremal with respect to interpolation constants.

Nguyen Van Trao (2000)

Publicacions Matemàtiques

We define a function μ from the set of sequences in the unit ball to R*+ by taking the greatest lower bound of the reciprocal of the interpolating constant of the sequences of the disk which get mapped to the given sequence by a holomorphic mapping from the disk to the ball. Its properties are studied in the spirit of the work of Amar and Thomas.

Distance géodésique sur un sous-analytique.

Krzystof Kurdyka, Patrice Orro (1997)

Revista Matemática de la Universidad Complutense de Madrid

Pour un ensemble sous-analytique, connexe fermé, la distance géodésique est atteinte et est uniformément équivalente, avec des constantes arbitrairement proches de 1, à une distance sous-analytique.

Distribution des préimages et des points périodiques d’une correspondance polynomiale

Tien-Cuong Dinh (2005)

Bulletin de la Société Mathématique de France

Nous construisons pour toute correspondance polynomiale F d’exposant de Lojasiewicz > 1 une mesure d’équilibre μ . Nous montrons que μ est approximable par les préimages d’un point générique et que les points périodiques répulsifs sont équidistribués sur le support de μ . En utilisant ces résultats, nous donnons une caractérisation des ensembles d’unicité pour les polynômes.

Distribution laws for integrable eigenfunctions

Bernard Shiffman, Tatsuya Tate, Steve Zelditch (2004)

Annales de l’institut Fourier

We determine the asymptotics of the joint eigenfunctions of the torus action on a toric Kähler variety. Such varieties are models of completely integrable systems in complex geometry. We first determine the pointwise asymptotics of the eigenfunctions, which show that they behave like Gaussians centered at the corresponding classical torus. We then show that there is a universal Gaussian scaling limit of the distribution function near its center. We also determine the limit...

Distribution of nodes on algebraic curves in N

Thomas Bloom, Norman Levenberg (2003)

Annales de l’institut Fourier

Given an irreducible algebraic curves A in N , let m d be the dimension of the complex vector space of all holomorphic polynomials of degree at most d restricted to A . Let K be a nonpolar compact subset of A , and for each d = 1 , 2 , . . . , choose m d points { A d j } j = 1 , . . . , m d in K . Finally, let Λ d be the d -th Lebesgue constant of the array { A d j } ; i.e., Λ d is the operator norm of the Lagrange interpolation operator L d acting on C ( K ) , where L d ( f ) is the Lagrange interpolating polynomial for f of degree d at the points { A d j } j = 1 , . . . , m d . Using techniques of pluripotential...

Currently displaying 1301 – 1320 of 5576