The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 126

Showing per page

Integral formulas on projective space and the radon transform of Gindikin-Henkin-Polyakov.

Bo Berndtsson (1988)

Publicacions Matemàtiques

We construct a variant of Koppelman's formula for (0,q)-forms with values in a line bundle, O(l), on projective space. The formula is then applied to a study of a Radon transform for (0,q)-forms, introduced by Gindikin-Henkin-Polyakov. Our presentation follows along the basic lines of Henkin-Polyakov [3], with some simplifications.

Non-embeddable 1 -convex manifolds

Jan Stevens (2014)

Annales de l’institut Fourier

We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable 1 -convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type ( 1 , - 3 ) . To this end we study small resolutions of c D 4 -singularities.

On q -Runge pairs

Mihnea Colţoiu (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We show that the converse of the aproximation theorem of Andreotti and Grauert does not hold. More precisely we construct a 4 -complete open subset D 6 (which is an analytic complement in the unit ball) such that the restriction map H 3 ( 6 , ) H 3 ( D , ) has a dense image for every C o h ( 6 ) but the pair ( D , 6 ) is not a 4 -Runge pair.

On the embedding and compactification of q -complete manifolds

Ionuţ Chiose (2006)

Annales de l’institut Fourier

We characterize intrinsically two classes of manifolds that can be properly embedded into spaces of the form N N - q . The first theorem is a compactification theorem for pseudoconcave manifolds that can be realized as X ¯ ( X ¯ N - q ) where X ¯ N is a projective variety. The second theorem is an embedding theorem for holomorphically convex manifolds into 1 × N .

On the embedding of 1-convex manifolds with 1-dimensional exceptional set

Lucia Alessandrini, Giovanni Bassanelli (2001)

Annales de l’institut Fourier

In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold X , with 1- dimensional exceptional set S and finitely generated second homology group H 2 ( X , ) , is embeddable in m × n if and only if X is Kähler, and this case occurs only when S does not contain any effective curve which is a boundary.

Currently displaying 61 – 80 of 126