The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
166
It is shown that under certain conditions every holomorphic isometry for the Carathéodory or the Kobayashi distances is an isometry for the corrisponding metrics. These results are used to give a characterization of biholomorphic mappings between convex domains and complete circular domains.
Let and be domains in and an isometry for the Kobayashi or Carathéodory metrics. Suppose that extends as a map to . We then prove that is a CR or anti-CR diffeomorphism. It follows that and must be biholomorphic or anti-biholomorphic.
This article considers C¹-smooth isometries of the Kobayashi and Carathéodory metrics on domains in ℂⁿ and the extent to which they behave like holomorphic mappings. First we provide an example which suggests that 𝔹ⁿ cannot be mapped isometrically onto a product domain. In addition, we prove several results on continuous extension of C⁰-isometries f : D₁ → D₂ to the closures under purely local assumptions on the boundaries. As an application, we show that there is no C⁰-isometry between a strongly...
We show that in the class of complex ellipsoids the symmetry of the pluricomplex Green function is equivalent to convexity of the ellipsoid.
Let P be a real-valued and weighted homogeneous plurisubharmonic polynomial in and let D denote the “model domain” z ∈ ℂⁿ | r(z):= Re z₁ + P(z’) < 0. We prove a lower estimate on the Bergman distance of D if P is assumed to be strongly plurisubharmonic away from the coordinate axes.
We study the behavior of the pluricomplex Green function on a bounded hyperconvex domain D that admits a smooth plurisubharmonic exhaustion function ψ such that 1/|ψ| is integrable near the boundary of D, and moreover satisfies the estimate at points close enough to the boundary with constants C,C’ > 0 and 0 < α < 1. Furthermore, we obtain a Hopf lemma for such a function ψ. Finally, we prove a lower bound on the Bergman distance on D.
We prove that, for certain domains , continuous product of domains , the Carathéodory pseudodistance satisfies the following product property
We give several characterizations of the symmetrized n-disc Gₙ which generalize to the case n ≥ 3 the characterizations of the symmetrized bidisc that were used in order to solve the two-point spectral Nevanlinna-Pick problem in ℳ ₂(ℂ). Using these characterizations of the symmetrized n-disc, which give necessary and sufficient conditions for an element to belong to Gₙ, we obtain necessary conditions of interpolation for the general spectral Nevanlinna-Pick problem. They also allow us to give a...
Given A∈ Ωₙ, the n²-dimensional spectral unit ball, we show that if B is an n×n complex matrix, then B is a “generalized” tangent vector at A to an entire curve in Ωₙ if and only if B is in the tangent cone to the isospectral variety at A. In the case of Ω₃, the zero set of the Kobayashi-Royden pseudometric is completely described.
Currently displaying 101 –
120 of
166