The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 15 of 15

Showing per page

Semistable quotients

Peter Heinzner, Luca Migliorini, Marzia Polito (1998)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Stable bundles on hypercomplex surfaces

Ruxandra Moraru, Misha Verbitsky (2010)

Open Mathematics

A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite...

Steinness of bundles with fiber a Reinhardt bounded domain

Karl Oeljeklaus, Dan Zaffran (2006)

Bulletin de la Société Mathématique de France

Let E denote a holomorphic bundle with fiber D and with basis B . Both D and B are assumed to be Stein. For D a Reinhardt bounded domain of dimension d = 2 or 3 , we give a necessary and sufficient condition on D for the existence of a non-Stein such E (Theorem 1 ); for d = 2 , we give necessary and sufficient criteria for E to be Stein (Theorem 2 ). For D a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for E to be Stein (Theorem 3 ).

Submersions and equivariant Quillen metrics

Xiaonan Ma (2000)

Annales de l'institut Fourier

In this paper, we calculate the behaviour of the equivariant Quillen metric by submersions. We thus extend a formula of Berthomieu-Bismut to the equivariant case.

Surfaces kählériennes de volume fini et équations de Seiberg-Witten

Yann Rollin (2002)

Bulletin de la Société Mathématique de France

Soit M = ( ) une surface complexe réglée. Nous introduisons des métriques de volume fini sur M dons les singularités sont paramétrisées par une structure parabolique sur le fibré . Nous généralisons alors un résultat de Burns-deBartolomeis et Le Brun, en montrant que l’existence de métriques kählériennes singulières, de volume fini, à courbure scalaire constante négative ou nulle sur M est équivalente à une condition de polystabilité parabolique sur  ; de plus ces métriques proviennent toutes de quotients...

Currently displaying 1 – 15 of 15

Page 1