The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

A class of non-rational surface singularities with bijective Nash map

Camille Plénat, Patrick Popescu-Pampu (2006)

Bulletin de la Société Mathématique de France

Let ( 𝒮 , 0 ) be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor E and its irreducible components E i , i I . The Nash map associates to each irreducible component C k of the space of arcs through 0 on 𝒮 the unique component of E cut by the strict transform of the generic arc in C k . Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if E · E i < 0 for any  i I .

A new proof of desingularization over fields of characteristic zero.

Santiago Encinas, Orlando Villamayor (2003)

Revista Matemática Iberoamericana

We present a proof of embedded desingularization for closed subschemes which does not make use of Hilbert-Samuel function and avoids Hironaka's notion of normal flatness (see also [171 page 224). Given a subscheme defined by equations, we prove that embedded desingularization can be achieved by a sequence of monoidal transformations; where the law of transformation on the equations defining the subscheme is simpler then that used in Hironaka 's procedure. This is done by showing that desingularization...

A propos du problème des arcs de Nash

Camille Plénat (2005)

Annales de l’institut Fourier

Soit = N i la décomposition canonique de l’espace des arcs passant par une singularité normale de surface. Dans cet article, on propose deux nouvelles conditions qui si elles sont vérifiées permettent de montrer que N i n’est pas inclus dans N j . On applique ces conditions pour donner deux nouvelles preuves du problème de Nash pour les singularités sandwich minimales.

Currently displaying 1 – 10 of 10

Page 1