Solutions of that have almost all real zeros.
The main purpose of this paper is to consider the analytic solutions of the non-homogeneous linear differential equation , where all coefficients , F ≢ 0 are analytic functions in the unit disc = z∈ℂ: |z|<1. We obtain some results classifying the growth of finite iterated order solutions in terms of the coefficients with finite iterated type. The convergence exponents of zeros and fixed points of solutions are also investigated.
We establish an asymptotic formula for a pair of linearly independent solutions of the subcritical Riemann–Weber type half-linear differential equation. We also complement the results of the author and M. Ünal, Acta Math. Hungar. 120 (2008), 147–163, where the equation was considered in the critical case.