Displaying 201 – 220 of 894

Showing per page

Solutions canards en des points tournants dégénérés

Thomas Forget (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous étudions un opérateur défini à partir d’une classe générale d’équations différentielles singulièrement perturbées dans le champ réel ; son caractère contractant permet de conclure à l’existence de solutions canard dans le cas où l’on a un point tournant dégénéré.

Solutions entières d'un système d'équations aux différences. II

Jean-Paul Bézivin, François Gramain (1996)

Annales de l'institut Fourier

Soit s un entier naturel non nul, et f une fonction entière de s variables complexes. Dans un article précédent, nous avons démontré dans le cas s = 1 , que si f est une solution d’un système de 2 équations aux différences à coefficients polynomiaux dans deux directions différentes, avec une condition restrictive portant sur les équations, alors f est le quotient d’un polynôme exponentiel par un polynôme. Dans cet article, nous démontrons ce résultat dans le cas général, et l’analogue pour le cas de...

Solutions non oscillantes d’une équation différentielle et corps de Hardy

François Blais, Robert Moussu, Fernando Sanz (2007)

Annales de l’institut Fourier

Soit ϕ : x ϕ ( x ) , x 0 une solution à l’infini d’une équation différentielle algébrique d’ordre n , P ( x , y , y , ... , y ( n ) ) = 0 . Nous donnons un critère géométrique pour que les germes à l’infini de ϕ et de la fonction identité sur appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.

Solutions of a multi-point boundary value problem for higher-order differential equations at resonance. (II)

Yuji Liu, Weigao Ge (2005)

Archivum Mathematicum

In this paper, we are concerned with the existence of solutions of the following multi-point boundary value problem consisting of the higher-order differential equation x ( n ) ( t ) = f ( t , x ( t ) , x ' ( t ) , , x ( n - 1 ) ( t ) ) + e ( t ) , 0 < t < 1 , ( * ) and the following multi-point boundary value conditions 1 * - 1 x ( i ) ( 0 ) = 0 f o r i = 0 , 1 , , n - 3 , x ( n - 1 ) ( 0 ) = α x ( n - 1 ) ( ξ ) , x ( n - 2 ) ( 1 ) = i = 1 m β i x ( n - 2 ) ( η i ) . * * Sufficient conditions for the existence of at least one solution of the BVP ( * ) and ( * * ) at resonance are established. The results obtained generalize and complement those in [13, 14]. This paper is directly motivated by Liu and Yu [J. Pure Appl. Math. 33 (4)(2002), 475–494...

Solutions of an advance-delay differential equation and their asymptotic behaviour

Gabriela Vážanová (2023)

Archivum Mathematicum

The paper considers a scalar differential equation of an advance-delay type y ˙ ( t ) = - a 0 + a 1 t y ( t - τ ) + b 0 + b 1 t y ( t + σ ) , where constants a 0 , b 0 , τ and σ are positive, and a 1 and b 1 are arbitrary. The behavior of its solutions for t is analyzed provided that the transcendental equation λ = - a 0 e - λ τ + b 0 e λ σ has a positive real root. An exponential-type function approximating the solution is searched for to be used in proving the existence of a semi-global solution. Moreover, the lower and upper estimates are given for such a solution.

Currently displaying 201 – 220 of 894