Polynomial operator matrices as semigroup generators: the 2 x 2 case.
We consider the equations of the form dy/dx = y²-P(x) where P are polynomials. We characterize the possible algebraic solutions and the class of equations having such solutions. We present formulas for first integrals of rational Riccati equations with an algebraic solution. We also present a relation between the problem of algebraic solutions and the theory of random matrices.
In this paper we provide the greatest lower bound about the number of (non-infinitesimal) limit cycles surrounding a unique singular point for a planar polynomial differential system of arbitrary degree.
We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.
We show that the Porous Medium Equation and the Fast Diffusion Equation, , with , can be modeled as a gradient system in the Hilbert space , and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.
The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.
We consider the second order self-adjoint differential equation (1) (r(t)y’(t))’ + p(t)y(t) = 0 on an interval I, where r, p are continuous functions and r is positive on I. The aim of this paper is to show one possibility to write equation (1) in the same form but with positive coefficients, say r₁, p₁ and to derive a sufficient condition for equation (1) to be oscillatory in the case p is nonnegative and converges.