Displaying 281 – 300 of 576

Showing per page

Polynomial Riccati equations with algebraic solutions

Henryk Żołądek (2002)

Banach Center Publications

We consider the equations of the form dy/dx = y²-P(x) where P are polynomials. We characterize the possible algebraic solutions and the class of equations having such solutions. We present formulas for first integrals of rational Riccati equations with an algebraic solution. We also present a relation between the problem of algebraic solutions and the theory of random matrices.

Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation

Li Zu, Daqing Jiang, Donal O'Regan (2017)

Czechoslovak Mathematical Journal

We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.

Porous medium equation and fast diffusion equation as gradient systems

Samuel Littig, Jürgen Voigt (2015)

Czechoslovak Mathematical Journal

We show that the Porous Medium Equation and the Fast Diffusion Equation, u ˙ - Δ u m = f , with m ( 0 , ) , can be modeled as a gradient system in the Hilbert space H - 1 ( Ω ) , and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets Ω n and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.

Positive and maximal positive solutions of singular mixed boundary value problem

Ravi Agarwal, Donal O’Regan, Svatoslav Staněk (2009)

Open Mathematics

The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.

Positive coefficients case and oscillation

Ján Ohriska (1998)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider the second order self-adjoint differential equation (1) (r(t)y’(t))’ + p(t)y(t) = 0 on an interval I, where r, p are continuous functions and r is positive on I. The aim of this paper is to show one possibility to write equation (1) in the same form but with positive coefficients, say r₁, p₁ and to derive a sufficient condition for equation (1) to be oscillatory in the case p is nonnegative and [ 1 / r ( t ) ] d t converges.

Currently displaying 281 – 300 of 576