The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2981 – 3000 of 9351

Showing per page

Fonctions multisommables

Bernard Malgrange, Jean-Pierre Ramis (1992)

Annales de l'institut Fourier

La notion de multisommabilité intervient dans la théorie des équations différentielles lorsque des exponentielles d’ordres différents se mélangent. Elle a été introduite par J. Écalle et étudié récemment par plusieurs auteurs. On en donne ici une définition simple, qui fait uniquement intervenir des propriétés de décroissance exponentielle.

Forced oscillation of third order nonlinear dynamic equations on time scales

Baoguo Jia (2010)

Annales Polonici Mathematici

Consider the third order nonlinear dynamic equation x Δ Δ Δ ( t ) + p ( t ) f ( x ) = g ( t ) , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation Δ ³ x ( n ) + n α | x | γ s g n ( n ) = ( - 1 ) n c , where α ≥ -1, γ > 0, c > 3, is oscillatory.

Currently displaying 2981 – 3000 of 9351