The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3021 – 3040 of 9351

Showing per page

Frequency analysis of preconditioned waveform relaxation iterations

Andrzej Augustynowicz, Zdzisław Jackiewicz (1999)

Applicationes Mathematicae

The error analysis of preconditioned waveform relaxation iterations for differential systems is presented. This analysis extends and refines previous results by Burrage, Jackiewicz, Nørsett and Renaut by incorporating all terms in the expansion of the error of waveform relaxation iterations in the Laplace transform domain. Lower bounds for the size of the window of rapid convergence are also obtained. The theory is illustrated for waveform relaxation methods applied to differential systems resulting...

Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval

Roman Šimon Hilscher, Petr Zemánek (2010)

Mathematica Bohemica

In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.

From multi-instantons to exact results

Jean Zinn-Justin (2003)

Annales de l’institut Fourier

In these notes, conjectures about the exact semi-classical expansion of eigenvalues of hamiltonians corresponding to potentials with degenerate minima, are recalled. They were initially motivated by semi-classical calculations of quantum partition functions using a path integral representation and have later been proven to a large extent, using the theory of resurgent functions. They take the form of generalized Bohr--Sommerfeld quantization formulae. We explain here their...

Functional differential equations

Tadeusz Jankowski (2002)

Czechoslovak Mathematical Journal

The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. In this paper we apply this technique to functional differential problems. It is shown that linear iterations converge to the unique solution and this convergence is superlinear.

Currently displaying 3021 – 3040 of 9351