Displaying 3361 – 3380 of 9351

Showing per page

Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3

Joanna Janczewska, Jakub Maksymiuk (2012)

Open Mathematics

We consider a conservative second order Hamiltonian system q ¨ + V ( q ) = 0 in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ 0 = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.

Homogeneous polynomial vector fields of degree 2 on the 2-dimensional sphere.

Jaume Llibre, Claudio Pessoa (2006)

Extracta Mathematicae

Let X be a homogeneous polynomial vector field of degree 2 on S2 having finitely many invariant circles. Then, we prove that each invariant circle is a great circle of S2, and at most there are two invariant circles. We characterize the global phase portrait of these vector fields. Moreover, we show that if X has at least an invariant circle then it does not have limit cycles.

Homogeneous systems of higher-order ordinary differential equations

Mike Crampin (2010)

Communications in Mathematics

The concept of homogeneity, which picks out sprays from the general run of systems of second-order ordinary differential equations in the geometrical theory of such equations, is generalized so as to apply to equations of higher order. Certain properties of the geometric concomitants of a spray are shown to continue to hold for higher-order systems. Third-order equations play a special role, because a strong form of homogeneity may apply to them. The key example of a single third-order equation...

Currently displaying 3361 – 3380 of 9351